Research shows antibody boost from polyamines

Researchers from The Tokyo University of Science in Japan have investigated the role of intracellular polyamines on N-glycan profiles of monoclonal antibodies (mAbs) and found that polyamine depletion led to an ER stress response in CHO cells, leading to an increase in galactosylation of mAbs.

Monoclonal antibodies (mAbs) are laboratory-designed proteins that mimic the immune system's antibodies. To date, many therapeutic mAbs belonging to the immunoglobulin G (IgG) class of antibodies, have been approved for the treatment of cancer and autoimmune diseases.

Cell lines such as the Chinese hamster ovary (CHO) cells are generally used to produce mAbs. Notably, the production and manufacture of mAbs are regulated by critical quality attributes (CQAs) to ensure their safety and efficacy in treatment. 

An important CQA for mAbs is the N-linked glycosylation present at a specific position (Asn297). N-linked glycans consist of N-acetylglucosamine (GlcNAc), mannose (Man), fucose (Fuc), galactose (Gal), and sialic acid.

The heterogeneity of the N-linked glycan profiles of mAbs can be attributed to the different numbers and linkages of additional saccharides. The composition of N-linked glycans affects the overall therapeutic efficacy, targeting ability, and immune-specificity of these antibodies.

For example, antibody-dependent cellular cytotoxicity (ADCC) is influenced by the fucosylation and galactosylation of N-linked glycans. Complement-dependent cytotoxicity (CDC) is also affected by the galactosylation and sialylation of N-linked glycans.

Therefore, it's crucial to meticulously regulate N-linked glycan profiles throughout the manufacturing process because the heterogeneity of the N-linked glycan profile of mAbs depends on the cell culture duration and changes in nucleotide sugars and glycosylation enzyme levels.

Recently, Dr. Kyohei Higashi, Associate Professor at Tokyo University of Science (TUS) in Japan, along with a team of researchers including Dr. Rin Miyajima and Dr. Masahiro Komeno, conducted a study to explore the effects of polyamines on N-linked glycan profiles of mAbs in CHO DP-12 cells.

These findings will contribute to the stable production of antibody-based drugs and was made available online on November 3, 2023 in the Journal of Biotechnology. 


Recent Issues