Crawling the Web: HIV and RNAi

4th March 2013

Everyday, Scientist Live turns its eyes to the Web around it and highlights news and research across the Internet. Today we look take an extended look at HIV replication and RNA-interference.


APOBEC3G (A3G)/APOBEC3F (A3F) are two members of APOBEC3 cytidine deaminase subfamily. Although they potently inhibit the replication of vif-deficient HIV-1, this mechanism is still poorly understood. Initially, A3G/A3F were thought to catalyze C-to-U transitions on the minus-strand viral cDNAs during reverse transcription to disrupt the viral life cycle.

Recently, it was found more likely that A3G/A3F directly interrupts viral reverse transcription or integration. In addition, A3G/A3F are both found in the high-molecular-mass complex in immortalized cell lines, where they interact with a number of different cellular proteins. However, there has been no evidence to prove that these interactions are required for A3G/A3F function.

Here, we studied A3G/A3F-restricted HIV-1 replication in six different human T cell lines by infecting them with wild-type or vif-deficient HIV-1. Interestingly, in a CEM-derived cell line CEM-T4, which expresses high levels of A3G/A3F proteins, the vif-deficient virus replicated as equally well as the wild-type virus, suggesting that these endogenous antiretroviral genes lost anti-HIV activities. It was confirmed that these A3G/A3F genes do not contain any mutation and are functionally normal. Consistently, overexpression of exogenous A3G/A3F in CEM-T4 cells still failed to restore their anti-HIV activities. However, this activity could be restored if CEM-T4 cells were fused to 293T cells to form heterokaryons.

These results demonstrate that CEM-T4 cells lack a cellular cofactor, which is critical for A3G/A3F anti-HIV activity. We propose that a further study of this novel factor will provide another strategy for a complete understanding of the A3G/A3F antiretroviral mechanism.

- Han Y, Wang X, Dang Y, Zheng Y-H (2008) APOBEC3G and APOBEC3F Require an Endogenous Cofactor to Block HIV-1 Replication. PLoS Pathog 4(7): e1000095. doi:10.1371/journal.ppat.1000095



While genetic screens have identified many genes essential for neurite outgrowth, they have been limited in their ability to identify neural genes that also have earlier critical roles in the gastrula, or neural genes for which maternally contributed RNA compensates for gene mutations in the zygote. To address this, we developed methods to screen the Drosophila genome using RNA-interference (RNAi) on primary neural cells and present the results of the first full-genome RNAi screen in neurons.

We used live-cell imaging and quantitative image analysis to characterize the morphological phenotypes of fluorescently labelled primary neurons and glia in response to RNAi-mediated gene knockdown. From the full genome screen, we focused our analysis on 104 evolutionarily conserved genes that when downregulated by RNAi, have morphological defects such as reduced axon extension, excessive branching, loss of fasciculation, and blebbing. To assist in the phenotypic analysis of the large data sets, we generated image analysis algorithms that could assess the statistical significance of the mutant phenotypes. The algorithms were essential for the analysis of the thousands of images generated by the screening process and will become a valuable tool for future genome-wide screens in primary neurons.

Our analysis revealed unexpected, essential roles in neurite outgrowth for genes representing a wide range of functional categories including signalling molecules, enzymes, channels, receptors, and cytoskeletal proteins. We also found that genes known to be involved in protein and vesicle trafficking showed similar RNAi phenotypes. We confirmed phenotypes of the protein trafficking genes Sec61alpha and Ran GTPase using Drosophila embryo and mouse embryonic cerebral cortical neurons, respectively. Collectively, our results showed that RNAi phenotypes in primary neural culture can parallel in vivo phenotypes, and the screening technique can be used to identify many new genes that have important functions in the nervous system.

- Sepp KJ, Hong P, Lizarraga SB, Liu JS, Mejia LA, et al. (2008) Identification of Neural Outgrowth Genes using Genome-Wide RNAi. PLoS Genet 4(7): e1000111. doi:10.1371/journal.pgen.1000111



As the brain matures, its responses become optimized. Behavioral measures show this through improved accuracy and decreased trial-to-trial variability. The question remains whether the supporting brain dynamics show a similar decrease in variability.

We examined the relation between variability in single trial evoked electrical activity of the brain (measured with EEG) and performance of a face memory task in children (8-15 y) and young adults (20-33 y). Behaviorally, children showed slower, more variable response times (RT), and less accurate recognition than adults. However, brain signal variability increased with age, and showed strong negative correlations with intrasubject RT variability and positive correlations with accuracy.

Thus, maturation appears to lead to a brain with greater functional variability, which is indicative of enhanced neural complexity. This variability may reflect a broader repertoire of metastable brain states and more fluid transitions among them that enable optimum responses.

Our results suggest that the moment-to-moment variability in brain activity may be a critical index of the cognitive capacity of the brain.

- McIntosh AR, Kovacevic N, Itier RJ (2008) Increased Brain Signal Variability Accompanies Lower Behavioral Variability in Development. PLoS Comput Biol 4(7): e1000106. doi:10.1371/journal.pcbi.1000106





To receive the Scientist Live weekly email NewsBrief please enter your details below

Twitter Icon © Setform Limited