Extremely Brilliant Source installs first components in storage ring tunnel

6th June 2019

There will be a 100x increase in performance of the beam
The powerful tool will aid research into challenges facing today's society

The ESRF’s new Extremely Brilliant Source (EBS) is officially entering a new stage. The first components for the EBS – the world’s first high-energy, fourth-generation synchrotron light source – have been installed in its storage ring tunnel: a new milestone in the history of the European Synchrotron.

“It’s a great moment for all the teams,” said Pantaleo Raimondi, ESRF accelerator and source director. “Seeing the first girders installed on time is testament to the expertise, hard work and commitment of all involved for more than four years. EBS represents a great leap forward in progress and innovation for the new generation of synchrotrons.”

The start of installation is a key milestone in the facility’s €150M pioneering upgrade programme to replace its third-generation source with a revolutionary and award-winning machine that will boost the performance of its generated X-ray beams by 100, giving scientists new research opportunities in fields such as health, energy, the environment, industry and nanotechnologies. The EBS lattice has already been adopted by other synchrotrons around the world, and 18 upgrades following EBS’s example are planned, including in the USA, in Japan and in China.

“Audacity and innovation underpin the ESRF’s mission and the Extremely Brilliant Source writes a new chapter in our history,” said ESRF Director-General Francesco Sette.

“EBS will provide X-rays with unprecedented brilliance and coherence, which will enable scientists to study materials at the atomic level in much greater detail, with higher quality, and at a much faster rate. This powerful new tool will help scientists to address major challenges facing our society,” adds Sette.

The ESRF made history as the world’s first third-generation synchrotron light source, producing X-rays 100 billion times brighter than the X-rays used in hospital radiographic equipment, and providing unrivalled opportunities for scientists in the exploration of materials and living matter. In its lifetime, the scientific output from ESRF instruments has totalled over 32,000 scientific publications, and it has generated four Nobel Prize laureates. After an outstanding performance, the ESRF’s X-ray source was shut down on 10 December last year, for a 20-month upgrade to the new Extremely Brilliant Source (EBS). The activity has been very intensive for the ESRF teams, who have spent three months dismantling the original ESRF storage ring: an enormous logistical challenge that required teams to remove 1720 tonnes of equipment, including 200km of cables, in just 11 weeks.

After a civil work phase, the EBS is now entering the installation phase. The nine-month installation phase will see 128 steel girders, pre-assembled with over 10,000 cutting-edge components, installed and connected in the 800 m-circumference storage ring and then precision-aligned to within 50 microns – about half the width of a human hair.

Once installation is complete, in November 2019, commissioning of the machine and beamlines will begin, and the powerful new research instrument is set to open to scientists in September 2020.





To receive the Scientist Live weekly email NewsBrief please enter your details below

Twitter Icon © Setform Limited